Worksheet, Discussion \#4; Thursday, 6/21/2018
Instructor name: Roy Zhao

1 Transforming Functions

1.1 Concepts

1. Vertical stretching and shifting is what is done to $f(x)$. Multiplying by a constant greater than 1 stretches the graph and adding a positive number shifts the graph up. Horizontal stretching and shifting is what is done to the x inside $f(x)$. Multiplying by a constant greater than 1 compresses the graph and adding a positive number shifts the graph to the left. We treat the order of shifting and stretching opposite from the vertical case.

1.2 Example

2. Let $f(x)$ be the function shown in the graph
 Draw and find the domain and range of $-f(-x-3)$.

Solution: For the domain, the original domain was $[-2,1]$, then looking at the -3 we shift it right by 3 then the $-x$ tells us to reflect it so we get $[1,4]$, then $[-4,-1]$ for the final domain. For the range, we simply reflect to go from $[-1,3]$ to $[-3,1]$.

1.3 Problems

3. Using the same function from before, draw and find the domain and range of $2 f(2 x-$ $6)+1$.

4. Using the same function from before, draw and find the domain and range of $-f(-x / 2)+$ 3.

Solution: For the domain, we multiply by -2 for the $-x / 2$ to get $[-2,1] \rightarrow[-2,4]$. For the range, we first multiply by -1 then add 3 to get $[-1,3] \rightarrow[-3,1] \rightarrow[0,4]$.

5. Let $g(x)$ be the function shown in the graph

Draw and find the domain and range of $g(-x+3) / 2-1$.

Solution: For the domain, we subtract 3 for the +3 , then we multiply by -1 for the $-x$ to get $[-2,2] \rightarrow[-5,-1] \rightarrow[1,5]$. For the range, we first divide by 2 then subtract 1 to get $[0,2] \rightarrow[0,1] \rightarrow[-1,0]$.

6. Using the same function from before, draw and find the domain and range of $-g(1-$ $x / 2)+1$.

Solution: For the domain, we subtract 1 for the +1 , then we multiply by -2 for the $-x / 2$ to get $[-2,2] \rightarrow[-3,1] \rightarrow[-2,6]$. For the range, we first multiply by -1 then add 1 to get $[0,2] \rightarrow[-2,0] \rightarrow[-1,1]$.

7. Write the function that is \sqrt{x} shifted to the left by 3 then horizontally stretched by 5 . Then compressed vertically by a factor of 4 and shifted down by 1 .

Solution: The horizontal transformation tells us that x is first divided by 5 then 3 is added. The vertical transformation tells us that the function is divided by 4 then 1 is subtracted. So the function is $\sqrt{x / 5+3} / 4-1$.
8. Write the function that is $1 / x$ shifted to the right by 2 then horizontally compressed by 3 and reflected. Then stretched vertically by a factor of 2 and shifted down by 4 .

Solution: The horizontal transformation tells us that x is first multiplied by -3 then 2 is subtracted. The vertical transformation tells us that the function is multiplied by 2 then 4 is subtracted. So the function is $\frac{2}{-3 x-2}-4$.

